Evaluating Performance of Measurement Systems Configured for TO-15 Toxic Organics in Ambient Air and Other Bulk Gases

Randall Bramston-Cook and Edward Bramston-Cook

Lotus Consulting Long Beach, California

Copyright Lotus Flower, Inc 2014

Selected Targets for California Human Health Screening Levels for Vapor Intrusion

Chemical	Indoor – Residential (nmol/mol)	Soil Gas – Commercial (nmol/mol)
Benzene	0.026	38.5
Carbon Tetrachloride	0.0095	13.5
Naphthalene	0.014	20.2
Tetrachloroethene (PCE)	0.060	89
1,1,1-Trichloroethane (TCA)	420	511,000 [sic]
Vinyl Chloride	0.012	17.5
Xylenes	168	200,000

California PUC Target Levels for Toxics in Biomethane

Constituent of Concern	Trigger Level (µmol/mol)	Upper Action Level (µmol/ mol)
total Dichlorobenzenes	0.95	24
Ethylbenzene	6.0	150
n-Nitroso- di-n-propylamine	0.0061	0.15
Vinyl Chloride	0.33	8.3
Hydrogen Sulfide	22	1,080
Methacrolein	0.37	18
Alkyl Sulfides	12	610
Toluene	240	12,000 [sic]

Translation of Units to IUPAC Molar Concentrations

Ratio of Analyte to Total	Invalid Reporting Units	Molar Units for Gases
1:100	%	cmol/mol
1:10 ⁶	ppm	µmol/mol
1:10 ⁹	ppb	nmol/mol
1:10 ¹²	ppt	pmol/mol
1:10 ¹⁵	ppq	fmol/mol
1:10 ¹⁸		amol/mol (atto)

Prescreen with FID

- Target concentrations widely variable
- Many GCMS system limited to linear range < 1,000
- Misguess on expected level mandates tedious reruns
- Rapid prescreen anticipates contamination level

FID Chromatograms of Sample Prescreens

Typical Cartesian Calibration Plot

Cartesian Plots

- Heavily weighted visually to high concentrations
- Difficult to see deviations at low concentrations
- Severely limited display of wide dynamic range

Typical Cartesian Calibration Plot

Plot of Response Factor versus log[concentration] for Propene

Response Factor versus log[concentration]

- Equal Weighting to low and high levels
- Easy to assess linearity over huge range
- Accurate assessment of TO-15 linearity mandate

Nitrogen Blank

- System contributions to low level measurements
- Possible sources:
 - Backflow of high concentration samples
 - Impure purge and carrier gases
 - System contamination
 - Thermal degradation of Tenax
- Must be lower than Detection Limits

Total Ion Chromatogram of Nitrogen Blank

Typical Levels in N₂ Blank

Analyte	Blank Levels (pmol/mol)
Propene	0.10
Ethanol	0.52
Benzene	0.15
Hexachlorobutadiene	0.14

Sample Carryover

- Can add to subsequent low level samples
- Sources:
 - Unswept dead volumes
 - System contamination from high sample
- Continuous purge of all sample lines
- No cold spots

Typical Carryover after 1 µmol/mol

Analyte	Carry-over
Propene	< 0.008%
Ethanol	< 0.112%
Benzene	< 0.015%
Hexachlorobutadiene	< 0.007%

SIM Chromatograms at 3.3 pmol/mol, with N₂ Blanks Hexachlorobutadiene

Typical Detection Limits

Analyte	Detection Limit (pmol/mol)
Propene	0.4
Ethanol	3.8
Benzene	0.9
Hexachlorobutadiene	2.5

Detected Analytes in Internal Standard

Detected Analytes in Int Std

Analyte	Concentration (pmol/mol)
Buta-1,3-diene	20
Ethanol	72
Propan-2-ol	203
Cyclohexane	18
1,4-Dioxane	66
1,1,2-Trichloroethene	17
Chlorobenzene	18

Peak Size without vs with Regulator

Effects without Regulator

High pressure canisters read too high

 Control samples show "degradation" over time, but return to "high" values after recharge

Samples Below Atmospheric

Volume improperly measured by MFC

 Lab air can be sucked into sample loading process

Mass Flow Controller Performance

- Calibrated to specific bulk gas typically air
- Change in bulk composition will impact measured flow
- Corrections possible if bulk gas is known and predictable
- Standards usually not matching sample matrix

Relative MFC Flows with varying CH₄/CO₂, Relative to Air

Mass Flow Controller Performance

- Biogas varying levels for CH₄ and CO₂
- Without corrections, biogas/biomethane results reported too low
- Fixed volume sample loop
 - true volumetric measure
 - independent of bulk gas

Atmospheric Pressure Effects on Sample Loop Volume

- Boyle-Mariotte's Law relates volume and pressure
- Changes in atmospheric pressure
 can alter volume in loop
- Pressure cycles twice a day

Atmospheric Pressure Effects on Sample Loop Volume

- Extremes:
 - +7% (1968, Agata, Siberia)
 - -14% (1979, Western Pacific)
- Typical variation: 0.25% per day
- Releasing loop pressure to atmosphere minimizes sample pressure effect

Errors in Sample Loop Volume with Atmospheric Pressure

Effects of Laboratory Temperature on Sample Loop Volume

- Charles-Gay-Lussac's Law volume to temperature
- Changes in sample loop temperature typically > 2.5%
- Holding loop in controlled oven above ambient minimizes effect

Errors in Sample Volume with Varying Ambient Temperature

Summary

- Dynamic range now capable of measurement over 10,000
- Detection: < single digit pmol/mol
- Nitrogen blanks well below LOD

Summary (cont.)

Internal standards with added targets not recommended

- Biogas and biomethane accurately analyzed with fixed volume sample loops
- Prescreen with FID avoids sample reruns

Contact Information:

Lotus Consulting - 310/569-0128

randy@lotusinstruments.com

edward@lotusinstruments.com

website: www.lotusinstruments.com